Numerical solution of differential equations using multiquadric radial basis function networks
نویسندگان
چکیده
This paper presents mesh-free procedures for solving linear differential equations (ODEs and elliptic PDEs) based on multiquadric (MQ) radial basis function networks (RBFNs). Based on our study of approximation of function and its derivatives using RBFNs that was reported in an earlier paper (Mai-Duy, N. & Tran-Cong, T. (1999). Approximation of function and its derivatives using radial basis function networks. Neural networks, submitted), new RBFN approximation procedures are developed in this paper for solving DEs, which can also be classified into two types: a direct (DRBFN) and an indirect (IRBFN) RBFN procedure. In the present procedures, the width of the RBFs is the only adjustable parameter according to a(i) = betad(i), where d(i) is the distance from the ith centre to the nearest centre. The IRBFN method is more accurate than the DRBFN one and experience so far shows that beta can be chosen in the range 7 < or = beta 10 for the former. Different combinations of RBF centres and collocation points (uniformly and randomly distributed) are tested on both regularly and irregularly shaped domains. The results for a 1D Poisson's equation show that the DRBFN and the IRBFN procedures achieve a norm of error of at least O(1.0 x 10(-4)) and O(1.0 x 10(-8)), respectively, with a centre density of 50. Similarly, the results for a 2D Poisson's equation show that the DRBFN and the IRBFN procedures achieve a norm of error of at least O(1.0 x 10(-3)) and O(1.0 x10(-6)) respectively, with a centre density of 12 X 12.
منابع مشابه
Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
متن کاملA numerical solution of a Kawahara equation by using Multiquadric radial basis function
In this article, we apply the Multiquadric radial basis function (RBF) interpo-lation method for nding the numerical approximation of traveling wave solu-tions of the Kawahara equation. The scheme is based on the Crank-Nicolsonformulation for space derivative. The performance of the method is shown innumerical examples.
متن کاملNumerical Solution of Poisson's Equation Using a Combination of Logarithmic and Multiquadric Radial Basis Function Networks
This paper presents numerical solution of elliptic partial differential equations Poisson’s equation using a combination of logarithmic and multiquadric radial basis function networks. This method uses a special combination between logarithmic and multiquadric radial basis functions with a parameter r. Further, the condition number which arises in the process is discussed, and a comparison is m...
متن کاملA method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers
In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...
متن کاملA numerical solution of mixed Volterra Fredholm integral equations of Urysohn type on non-rectangular regions using meshless methods
In this paper, we propose a new numerical method for solution of Urysohn two dimensional mixed Volterra-Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on inverse multiquadric radial basis functions (RBFs) constructed on a set of disordered data. The method is a meshless method, because it ...
متن کاملSpace-time radial basis function collocation method for one-dimensional advection-diffusion problem
The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2001